
AnalysisAgent: An agent submitted to the

ANAC 2025 SCM league

Eito Sugita, Reita Kaneko
Nagoya Institute of Technology

e.sugita.348@stn.nitech.ac.jp, cmt14035@ict.nitech.ac.jp

June 14, 2025

Abstract

This report describes the AnalysisAgent for the SCML OneShot Track
of ANAC2025. AnalysisAgent is an agent based on the SimpleAgent that
is developed to address the negotiation problems faced by SimpleAgent in
a world populated by many asynchronous agents.

1 Introduction

AnalysisAgent is a negotiation agent that is enhanced based on SimpleAgent.
In SCML OneShot Track, agents can be broadly classified into two types:
those that negotiate sequentially one counterpart at a time like SimpleAgent,
and those that evaluate and negotiate multiple interactions synchronously like
OneShotSyncAgent. In the 2024 tournament, the top 5 agents were all based
on the OneShotSyncAgent framework, while agents based on the SimpleAgent
tended to achieve lower scores.
As a preliminary experiment, we had SimpleAgent negotiate with multiple

OneShotSyncAgent - based agents within the same world, and observed a sim-
ilar trend. There are two possible reasons why SimpleAgent achieves lower scores
than agents based on the OneShotSyncAgent framework. The first reason is
SimpleAgent’s proposal strategy. In this approach, SimpleAgent directly offers
the required negotiation quantity to all agents. On the other hand, OneShot-
SyncAgent compares the combinations of all offers made by negotiating agents
and accepts the one that most closely meets the required negotiation quantity.
Therefore, depending on the combination of agents involved in the negotiation,
the probability of SimpleAgent’s offer being accepted by OneShotSyncAgent
decreases as the required negotiation quantity of SimpleAgent increases.
The second reason is SimpleAgent’s acceptance strategy, which disregards

ongoing negotiation offers. SimpleAgent accepts every proposal as long as the
quantity of offers below its required negotiation quantity, without considering
the ongoing negotiation success. Therefore, if a negotiation turns out to be

1



successful, the cumulative transaction quantity up to that point might exceed
the required negotiation quantity. For example, when negotiating with two
agents, if SimpleAgent accepts an offer from one agent while offering the full
required negotiation quantity to the other, the final transaction quantity can
exceed its actual requirement once the SimpleAgent’s offer is accepted. Thus,
AnalysisAgent investigates whether incorporating the following improvements
to SimpleAgent can bring its performance closer to that of OneShotSyncAgent-
based agents.

1. Distribution Strategy: By distributing the required negotiation quantity
among the negotiating agents, excessive offers are suppressed.

2. Acceptance Strategy: Offers are evaluated for acceptance by considering
the expected successful quantity relative to the trading quantity during
negotiations.

2 Strategy design

AnalysisAgent negotiates with a single counterpart agent i, using its negotiation
history to reach an agreement on both the quantity qi and the unit price ci. The
negotiation process consists of two strategies: the propose strategy, in which
it presents the offer (qi, ci) to the counterpart, and the response strategy, in
which it decides whether to accept or reject an offer from the counterpart. The
following sections provide a detailed explanation of each strategy.

2.1 The propose strategy

AnalysisAgent determines its offers based on its past negotiation history. In
doing so, it adjusts the distribution strategy according to the volume of accu-
mulated history. If less than β of the total negotiation steps have elapsed, or if
there has been no previous instance of successful negotiation, the required ne-
gotiation quantity is evenly distributed among all counterpart agents and that
amount is offered. In this case, a minimum quantity of 1 is enforced. In all other
cases̶namely, during a negotiation step t where sufficient history has been ac-
cumulated̶the distribution quantity is calculated first, followed by determining
an adjustment value to establish the final allocated quantity.
The allocation quantity for agent i, qt,i, is calculated by the following equa-

tion:

qt,i = qneedt

∑t
t′=0

t′

T q̂i,t′

Z
. (1)

Here qneedt is the required negotiation quantity at step t, T is the total number
of steps, q̂i,t′ is the quantity obtained from the successful negotiation in a past

step t′, Z is the distribution function,
∑

i

∑t
t′=0

t′

T q̂i,t′ .

2



In this allocation scheme, agents with larger quantities achieved in past suc-
cessful negotiations receive preferential allocations. Additionally, by assigning
heavier weights to the most recent successful quantities in the history, the ap-
proach also accounts for responsiveness to changes in other agents’ strategies.
The adjustment quantity alphai(qt,i) for the allocation quantity qt,i is cal-

culated using the following equation based on the historical offer acceptance
rate:

αi(q) = argmax
α′∈{−1,0,1}

P (i, q + α′), (2)

P (i, q) =

{
n(i,q)
N(i,q) if N(i, q) > 0,

0 otherwise.
(3)

Here P (i, q) is the acceptance rate for quantity q by agent i, N(i, q) is the
number of times that quantity q was offered to agent i in the past, and n(i, q)
is the number of times that agent i accepted the offer of quantity q.
This adjustment factor is intended to modify the proposed quantity based

on historical results, favoring quantities that have proven more likely to lead
to successful negotiations. Finally, the offer is made using the best unit price,
while the quantity is determined by the method described above.

2.2 The response strategy

AnalysisAgent responds to an offer from agent i based on the offered quantity qi.
Specifically, if the offered quantity qi is below the value obtained by subtracting
the expected successful quantity of other agents from the required negotiation
quantity qneed, the offer is accepted; otherwise, it is rejected or the negotiation
ends. The expected successful quantity is updated each time an offer is pro-
posed to a negotiating agent. For example, when a quantity qj is proposed to
agent j, the probability that agent j will accept qj (as defined in (Eq. 3)) is
calculated. If this probability exceeds a certain threshold, qj is added to the
expected successful quantity; otherwise, qj is subtracted from it. By using the
expected successful quantity, the system can moderate its acceptance policy̶
it avoids being overly restrictive by optimistically assuming that all ongoing
quantities will succeed, and it prevents over-acceptance that might result from
a pessimistic assumption that everything will fail.

3



3 Evaluation

In the following experiments, we set n configs = 30 and n runs per world = 1.
Table 1 presents the results of a preliminary experiment where negotiations were
conducted using SimpleAgent, CautiousOneShotAgent (last year’s champion),
and SyncRandomOneShotAgent (the synchronous baseline agent), with their
scores compared. The results confirmed that the SimpleAgent scores lower than
agents based on the OneShotSyncAgent framework. Table 2 shows the results
of a similar experiment in which SimpleAgent was replaced with AnalysisAgent.
In this experiment, the parameter for AnalysisAgent is set to β = 20. Com-
paring Table 1 and Table 2, we can see that AnalysisAgent achieves good scores
in the same environment as the preliminary experiment. AnalysisAgent con-
sistently outperforms SyncRandomOneShotAgent in terms of score̶a perfor-
mance benchmark that SimpleAgent never managed to exceed̶but it still falls
short against CautiousOneshotAgent.

Table 1: The Result of Preliminary Experiment

Agent
Num. of days

50 days 125 days 200 days
SimpleAgent 0.985 1.024 1.003

SyncRandomOneShotAgent 1.040 1.049 1.029
CautiousOneShotAgent 1.087 1.098 1.079

Table 2: The Result of Main Experiment

Agent
Num. of days

50 days 125 days 200 days
AnalysisAgent 1.054 1.060 1.060

SyncRandomOneShotAgent 1.040 1.049 1.050
CautiousOneShotAgent 1.087 1.098 1.092

Additionally, Table 3 and Table 4 show, for each experiment, the frequency of
steps in which discrepancies occurred between the quantity the agent is required
to negotiate in one step and the quantity actually transacted in that step, ex-
pressed as a percentage. For example, Table 4 shows that 55% of all steps ended
with a discrepancy of 0 relative to AnalysisAgent’s required negotiation quan-
tity.
Comparing SimpleAgent in Table 3 with AnalysisAgent in Table 4, it is clear

that AnalysisAgent has significantly reduced the rate of steps where the dis-
crepancy in required negotiation quantity is negative (<0). This indicates a
decrease in the frequency of over-trading. Based on these results, it is concluded
that AnalysisAgent has successfully alleviated the over-trading issue observed
in SimpleAgent. On the other hand, compared to the aggressively accepting
SimpleAgent, there is an increase in the rate of steps where the transaction

4



quantity falls short (by 1∼ 5 and 6∼10). This suggests that AnalysisAgent may
be more conservative in its acceptance behavior.

Table 3: Percentage of Steps with Discrepency(Preliminary Experiment)

Agent
Discrepancy

< 0 0 1 ∼ 5 6 ∼ 10

SimpleAgent 0.207 0.663 0.122 0.008
SyncRandomOneShotAgent 0.013 0.670 0.280 0.037
CautiousOneShotAgent 0.103 0.807 0.084 0.006

Table 4: Percentage of Steps with Discrepency(Main Experiment)

Agent
Discrepancy

< 0 0 1 ∼ 5 6 ∼ 10

AnalysisAgent 0.029 0.550 0.407 0.014
SyncRandomOneShotAgent 0.031 0.636 0.278 0.055
CautiousOneShotAgent 0.128 0.749 0.110 0.013

4 Conclusions

We proposed the AnalysisAgent, which is an improved version of SimpleAgent,
and demonstrated through experiments that in worlds where many agents adopt
distribution strategies, the AnalysisAgent tends to achieve better performance
than SimpleAgent.
However, while the proposed strategy of AnalysisAgent alleviates the over-

negotiation issues observed in SimpleAgent, it introduces a new problem in
the form of insufficient transaction quantity. To further enhance the utility of
AnalysisAgent, it is necessary to refine its strategy so that it not only prevents
over-trading but also fully executes transactions when the remaining required
volume is low.

5


